Search results for "Iterated conditional"
showing 10 items of 15 documents
Iterated Conditionals and Characterization of P-Entailment
2021
In this paper we deepen, in the setting of coherence, some results obtained in recent papers on the notion of p-entailment of Adams and its relationship with conjoined and iterated conditionals. We recall that conjoined and iterated conditionals are suitably defined in the framework of conditional random quantities. Given a family \(\mathcal {F}\) of n conditional events \(\{E_{1}|H_{1},\ldots , E_{n}|H_{n}\}\) we denote by \(\mathcal {C}(\mathcal {F})=(E_{1}|H_{1})\wedge \cdots \wedge (E_{n}|H_{n})\) the conjunction of the conditional events in \(\mathcal F\). We introduce the iterated conditional \(\mathcal {C}(\mathcal {F}_{2})|\mathcal {C}(\mathcal {F}_{1})\), where \(\mathcal {F}_{1}\)…
Probabilistic inferences from conjoined to iterated conditionals
2017
Abstract There is wide support in logic, philosophy, and psychology for the hypothesis that the probability of the indicative conditional of natural language, P ( if A then B ) , is the conditional probability of B given A, P ( B | A ) . We identify a conditional which is such that P ( if A then B ) = P ( B | A ) with de Finetti's conditional event, B | A . An objection to making this identification in the past was that it appeared unclear how to form compounds and iterations of conditional events. In this paper, we illustrate how to overcome this objection with a probabilistic analysis, based on coherence, of these compounds and iterations. We interpret the compounds and iterations as cond…
Generalized probabilistic modus ponens
2017
Modus ponens (from A and “if A then C” infer C) is one of the most basic inference rules. The probabilistic modus ponens allows for managing uncertainty by transmitting assigned uncertainties from the premises to the conclusion (i.e., from P(A) and P(C|A) infer P(C)). In this paper, we generalize the probabilistic modus ponens by replacing A by the conditional event A|H. The resulting inference rule involves iterated conditionals (formalized by conditional random quantities) and propagates previsions from the premises to the conclusion. Interestingly, the propagation rules for the lower and the upper bounds on the conclusion of the generalized probabilistic modus ponens coincide with the re…
Interpreting Connexive Principles in Coherence-Based Probability Logic
2021
We present probabilistic approaches to check the validity of selected connexive principles within the setting of coherence. Connexive logics emerged from the intuition that conditionals of the form If \(\mathord {\thicksim }A\), then A, should not hold, since the conditional’s antecedent \(\mathord {\thicksim }A\) contradicts its consequent A. Our approach covers this intuition by observing that for an event A the only coherent probability assessment on the conditional event \(A|\bar{A}\) is \(p(A|\bar{A})=0\). Moreover, connexive logics aim to capture the intuition that conditionals should express some “connection” between the antecedent and the consequent or, in terms of inferences, valid…
A multiagent system approach for image segmentation using genetic algorithms and extremal optimization heuristics
2006
We propose a new distributed image segmentation algorithm structured as a multiagent system composed of a set of segmentation agents and a coordinator agent. Starting from its own initial image, each segmentation agent performs the iterated conditional modes method, known as ICM, in applications based on Markov random fields, to obtain a sub-optimal segmented image. The coordinator agent diversifies the initial images using the genetic crossover and mutation operators along with the extremal optimization local search. This combination increases the efficiency of our algorithm and ensures its convergence to an optimal segmentation as it is shown through some experimental results.
Logical Operations among Conditional Events: theoretical aspects and applications
2019
We generalize the notions of conjunction and disjunction of two conditional events to the case of $n$ conditional events. These notions are defined, in the setting of coherence, by means of suitable conditional random quantities with values in the interval $[0,1]$. We also define the notion of negation, by verifying De Morgan's Laws. Then, we give some results on coherence of prevision assessments for some families of compounded conditionals and we show that some well known properties which are satisfied by conjunctions and disjunctions of unconditional events are also satisfied by conjunctions and disjunction of conditional events. We also examine in detail the coherence of the prevision a…
On compound and iterated conditionals
2021
We illustrate the notions of compound and iterated conditionals introduced, in recent papers, as suitable conditional random quantities, in the framework of coherence. We motivate our definitions by examining some concrete examples. Our logical operations among conditional events satisfy the basic probabilistic properties valid for unconditional events. We show that some, intuitively acceptable, compound sentences on conditionals can be analyzed in a rigorous way in terms of suitable iterated conditionals. We discuss the Import-Export principle, which is not valid in our approach, by also examining the inference from a material conditional to the associated conditional event. Then, we illus…
A Multiresolution Approach Based on MRF and Bak–Sneppen Models for Image Segmentation
2006
The two major Markov Random Fields (MRF) based algorithms for image segmentation are the Simulated Annealing (SA) and Iterated Conditional Modes (ICM). In practice, compared to the SA, the ICM provides reasonable segmentation and shows robust behavior in most of the cases. However, the ICM strongly depends on the initialization phase. In this paper, we combine Bak-Sneppen model and Markov Random Fields to define a new image segmentation approach. We introduce a multiresolution technique in order to speed up the segmentation process and to improve the restoration process. Image pixels are viewed as lattice species of Bak-Sneppen model. The a-posteriori probability corresponds to a local fitn…
Probabilities of conditionals and previsions of iterated conditionals
2019
Abstract We analyze selected iterated conditionals in the framework of conditional random quantities. We point out that it is instructive to examine Lewis's triviality result, which shows the conditions a conditional must satisfy for its probability to be the conditional probability. In our approach, however, we avoid triviality because the import-export principle is invalid. We then analyze an example of reasoning under partial knowledge where, given a conditional if A then C as information, the probability of A should intuitively increase. We explain this intuition by making some implicit background information explicit. We consider several (generalized) iterated conditionals, which allow…
Connexive Logic, Probabilistic Default Reasoning, and Compound Conditionals
2023
We present two approaches to investigate the validity of connexive principles and related formulas and properties within coherence-based probability logic. Connexive logic emerged from the intuition that conditionals of the form if not-A, then A, should not hold, since the conditional’s antecedent not-A contradicts its consequent A. Our approaches cover this intuition by observing that the only coherent probability assessment on the conditional event A | not-A is p(A | not-A) = 0. In the first approach we investigate connexive principles within coherence-based probabilistic default reasoning, by interpreting defaults and negated defaults in terms of suitable probabilistic constraints on con…